What's All This Three-Level Grader Stuff, Anyhow?

Nov. 10, 2003
About 40 years ago, when I was at Philbrick, I worked a lot on operational-amplifier (we NEVER said op-amp) applications. Every once in a while, a customer would ask about a "zero-crossing detector," or more simply, just a "crossing detector." We...

About 40 years ago, when I was at Philbrick, I worked a lot on operational-amplifier (we NEVER said op-amp) applications. Every once in a while, a customer would ask about a "zero-crossing detector," or more simply, just a "crossing detector." We never thought of calling this a "comparator." We usually made the customer happy with an op amp, a couple resistors, and maybe a few diodes in the feedback, so he could get a response in a few dozen milliseconds, perhaps. (When Widlar brought out the µA710, we were all astonished by the sub-microsecond response!)

But I did figure out how one op amp can perform two comparisons. Back when an op amp cost $20 and UP, that was NOT insignificant savings (see Fig. 1). When IIN is around zero, the output is around zero. If IIN exceeds I2, the output will switch to a large negative level. If IIN reverses and exceeds I1, the output will switch to a large positive level. So here is a sort of discriminator with three output levels, which provides nice advantages. This went into the Philbrick 1966 Amplifier Applications Handbook. I never heard of anybody else who invented a three-level grader using just one amplifier.

Recently (38 years later), a guy asked me if we could help him with a circuit to detect a fairly small current (20 mA) even if the current may at other times exceed a couple amperes. He also had to detect when the current exceeded +20 mA, or −20 mA. And the common-mode range could exceed 10, 20, or 40 V. Therefore, most linear, direct-coupled circuits were not going to do the job for him. What's a mother to do?

Figure 2 is a basic three-level grader, with two optically coupled outputs that are brought down to ground by 4N28's. The LMV2011's low VOFFSET of 3 µV (20 µV max) is quite small compared to the 400-µV signal. Neither output is ON for input currents −16 mA < IIN < +16 mA, but each output responds when the input signal exceeds plus or minus 22 mA. Response is a few milliseconds for small input overdrive, falling below 20 µs for large currents. I had to build this, to prove it would work—and it does. So in some cases, getting one amplifier to do the work of two is NOT a silly deal. Getting signal information down to ground from a high voltage level is not that hard, if you know the tricks.

Comments invited! [email protected] —or:

Mail Stop D2597A, National Semiconductor
P.O. Box 58090, Santa Clara, CA 95052-8090

Sponsored Recommendations

Board-Mount DC/DC Converters in Medical Applications

March 27, 2024
AC/DC or board-mount DC/DC converters provide power for medical devices. This article explains why isolation might be needed and which safety standards apply.

Use Rugged Multiband Antennas to Solve the Mobile Connectivity Challenge

March 27, 2024
Selecting and using antennas for mobile applications requires attention to electrical, mechanical, and environmental characteristics: TE modules can help.

Out-of-the-box Cellular and Wi-Fi connectivity with AWS IoT ExpressLink

March 27, 2024
This demo shows how to enroll LTE-M and Wi-Fi evaluation boards with AWS IoT Core, set up a Connected Health Solution as well as AWS AT commands and AWS IoT ExpressLink security...

How to Quickly Leverage Bluetooth AoA and AoD for Indoor Logistics Tracking

March 27, 2024
Real-time asset tracking is an important aspect of Industry 4.0. Various technologies are available for deploying Real-Time Location.

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!