FET ACCOMPLI!

Nov. 8, 2007
Congratulations go out to Toshiba for scoring a real technological first with its development of a gallium-nitride (GaN) power fieldeffect transistor (FET), designed for the Ku-band (12 to 18GHz) frequency range. What’s so special

Congratulations go out to Toshiba for scoring a real technological first with its development of a gallium-nitride (GaN) power fieldeffect transistor (FET), designed for the Ku-band (12 to 18GHz) frequency range. What’s so special about this transistor? It achieves an output power of 65.4W at 14.5GHz, which is the highest level of performance yet reported at this frequency band. Full-scale production is expected to start in the first quarter of 2008.

Generally speaking, technological advances in Ku-band microwave amplifiers focus on replacing the electron tubes with semiconductors and, in particular, GaN devices. What Toshiba did with this particular transistor is implement a structure that’s a high-electron mobility transistor optimised for Ku-band application. Via hole technology played its part in this development, ousting source wire bonding. This will cut parasitic inductance and enhance circuit design for work at Ku-band frequencies.

Toshiba’s development has good timing. Industry trends for satellite microwave communications indicate a steadily increasing demand for GaN power FETs for both new equipment and the replacement of electron tubes.

The reality is that rapidly increasing communications demands in satellite comms systems pushes the need for higher output power in signal amplifying components. The dilemma here, though, is that increased performance is always coupled with heat-dissipation challenges. This is an area where GaN devices provide a practical advantage over more established technologies like gallium arsenide.

Toshiba managed to improve performance characteristics by optimising the composition and thickness of the AlGaN and GaN layers formed on the highly heatconductive silicon-carbide (SiC) substrate of the HEMT structure. Also, the company applied a shorter gate length of below 0.3μm and optimised the shape of each electrode and element configuration to enhance heat dissipation and, thus, boost performance within Ku-band frequencies.

To reduce the parasitic inductance and improve higher frequency performance, Toshiba also developed a special way of forming via holes in SiC substrate—a particularly demanding process.

Shortening gate lengths means that suppressing current leakage at the gate electrode is critical. In this case, an overcoat process is applied around each gate electrode. It ultimately suppresses gate leakage to 1/30 that of Toshiba’s conventional approaches. An electron beam exposure technology is applied to secure stable processing of gate lengths below 0.3m.

Not sitting still, the company is preparing to develop GaN technology for microwave frequency applications in 18 to 30GHz frequencies and beyond.

Sponsored Recommendations

Highly Integrated 20A Digital Power Module for High Current Applications

March 20, 2024
Renesas latest power module delivers the highest efficiency (up to 94% peak) and fast time-to-market solution in an extremely small footprint. The RRM12120 is ideal for space...

Empowering Innovation: Your Power Partner for Tomorrow's Challenges

March 20, 2024
Discover how innovation, quality, and reliability are embedded into every aspect of Renesas' power products.

Article: Meeting the challenges of power conversion in e-bikes

March 18, 2024
Managing electrical noise in a compact and lightweight vehicle is a perpetual obstacle

Power modules provide high-efficiency conversion between 400V and 800V systems for electric vehicles

March 18, 2024
Porsche, Hyundai and GMC all are converting 400 – 800V today in very different ways. Learn more about how power modules stack up to these discrete designs.

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!