New Implant Strategy Offers Hope To Brain-Disorder Sufferers

April 21, 2009
A prototype multi-electrode stimulation and recording probe for deep-brain stimulation, unveiled by IMEC at this week’s Design, Automation & Test in Europe (DATE) conference, opens up possibilities for more effective stimulation with less side effects...

A prototype multi-electrode stimulation and recording probe for deep-brain stimulation, unveiled by IMEC at this week’s Design, Automation & Test in Europe (DATE) conference, opens up possibilities for more effective stimulation with less side effects. Other potential benefits include reduced energy consumption due to focusing the stimulation current on the desired brain target, and closed-loop control adapting the stimulation based on the recorded effect.

Brain implants for electrical stimulation of specified brain areas are used as a last-resort therapy for Parkinson’s disease, obsessive-compulsive disorder, and other brain ailments. Today’s deep-brain stimulation probes use millimeter-size electrodes. They stimulate, in a highly unfocused manner, a large area of the brain and create significant unwanted side effects.

IMEC’s design and modeling strategy consists of multiple electrodes, enabling simultaneous stimulation and recording. By employing this strategy, the designers created prototype probes with electrodes measuring 10 microns, and various electrode topologies.

The strategy relies on finite-element modeling of the electrical field distribution around the brain probe, accomplished with multi-physics simulation software COSMOL 3.4 and 3.5. The probe’s mechanical properties during surgical insertion could be investigated with the tools, too. Results show that adapting the penetration depth and field asymmetry makes it possible to steer the electrical field around the probe.

“To have a more precise stimulation and recording, we need electrodes that are as small as individual brain cells (neurons),” says Wolfgang Eberle, senior scientist and project manager at IMEC’s bioelectronics research group. “Such small electrodes can be made with semiconductor process technology, appropriate design tools, and advanced electronic signal processing.”

Sponsored Recommendations

TTI Transportation Resource Center

April 8, 2024
From sensors to vehicle electrification, from design to production, on-board and off-board a TTI Transportation Specialist will help you keep moving into the future. TTI has been...

Cornell Dubilier: Push EV Charging to Higher Productivity and Lower Recharge Times

April 8, 2024
Optimized for high efficiency power inverter/converter level 3 EV charging systems, CDE capacitors offer high capacitance values, low inductance (< 5 nH), high ripple current ...

TTI Hybrid & Electric Vehicles Line Card

April 8, 2024
Components for Infrastructure, Connectivity and On-board Systems TTI stocks the premier electrical components that hybrid and electric vehicle manufacturers and suppliers need...

Bourns: Automotive-Grade Components for the Rough Road Ahead

April 8, 2024
The electronics needed for transportation today is getting increasingly more demanding and sophisticated, requiring not only high quality components but those that interface well...

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!