Researchers at the Pacific Northwest National Laboratory have developed a smaller and more powerful micro-battery that will improve studies that track the migration of salmon and other fish. (courtesy of the Pacific Northwest National Laboratory)
Researchers at the Pacific Northwest National Laboratory have developed a smaller and more powerful micro-battery that will improve studies that track the migration of salmon and other fish. (courtesy of the Pacific Northwest National Laboratory)
Researchers at the Pacific Northwest National Laboratory have developed a smaller and more powerful micro-battery that will improve studies that track the migration of salmon and other fish. (courtesy of the Pacific Northwest National Laboratory)
Researchers at the Pacific Northwest National Laboratory have developed a smaller and more powerful micro-battery that will improve studies that track the migration of salmon and other fish. (courtesy of the Pacific Northwest National Laboratory)
Researchers at the Pacific Northwest National Laboratory have developed a smaller and more powerful micro-battery that will improve studies that track the migration of salmon and other fish. (courtesy of the Pacific Northwest National Laboratory)

Battery Better Powers Tiny Fish Trackers

March 14, 2014
The Pacific Northwest National Laboratory has developed a smaller and more powerful battery that should improve the tracking of salmon and other fish as they migrate.

Researchers use tiny transmitters to track the migration of salmon and other fish. These transmitters must be powered by batteries, though, affecting the age and range of the fish that can be monitored and limiting the scope of their studies. The Pacific Northwest National Laboratory has developed a smaller and more powerful battery that should improve this tracking.

Related Articles

At 6 mm long and 3 m wide, the micro-battery is a little larger than a long grain of rice (see the figure). Smaller batteries mean smaller transmitters, which then can be implanted in younger fish to give scientists a better view of their life cycle. With more power, these transmitters can broadcast signals over longer distances so researchers can track fish further from shore or from dams, or deeper in the water. 

“There’s nothing like this available commercially that can be injected,” said Daniel Deng, a PNNL engineer who was part of the battery’s development team. “Either the batteries are too big or they don’t last long enough to be useful. That’s why we had to design our own.”

The battery uses the “jellyroll” technique commonly used in household cylindrical batteries. Battery materials are placed on top of each other in a process known as lamination and then rolled up together. The layers include a separating material sandwiched by a cathode made of carbon fluoride and an anode made of lithium.

This technique increases the area of the electrodes without increasing their thickness or the battery’s overall size. It also keeps the impedance from getting too high, which can be a problem in small batteries as electrons don’t have the space to flow easily or quickly along their required routes. The jellyrolling creates a larger space for the electrons to interact.

The battery weighs 70 mg and boasts 240 watt hours per kilogram, compared to the 135 mg 100 watt hours per kilogram of commercially available silver-oxide button micro-batteries. It can power a 744-µs signal sent every three seconds for about three weeks, or five seconds for a month. Also, it works better in the cold waters where salmon often live, thanks to its lithium and carbon-fluoride chemistry.  

The scientists cut and formed tiny snippets of battery materials and put them through a flattening device like a pasta maker, binding them together and rolling them by hand into tiny capsules. Last summer, a PNNL team implanted battery-powered tags into salmon in the Snake River with extremely good preliminary results reported. Battelle, which operates PNNL, has applied for a patent on the technology.

Sponsored Recommendations

Understanding Thermal Challenges in EV Charging Applications

March 28, 2024
As EVs emerge as the dominant mode of transportation, factors such as battery range and quicker charging rates will play pivotal roles in the global economy.

Board-Mount DC/DC Converters in Medical Applications

March 27, 2024
AC/DC or board-mount DC/DC converters provide power for medical devices. This article explains why isolation might be needed and which safety standards apply.

Use Rugged Multiband Antennas to Solve the Mobile Connectivity Challenge

March 27, 2024
Selecting and using antennas for mobile applications requires attention to electrical, mechanical, and environmental characteristics: TE modules can help.

Out-of-the-box Cellular and Wi-Fi connectivity with AWS IoT ExpressLink

March 27, 2024
This demo shows how to enroll LTE-M and Wi-Fi evaluation boards with AWS IoT Core, set up a Connected Health Solution as well as AWS AT commands and AWS IoT ExpressLink security...

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!