Latest from Power

ID 217230663 © Christian Offenberg - Dreamstime.com | electronica.de
promo_messe_munich__id_217230663__christian_offenb
ID 39977536 © Pino Carboni | Dreamstime.com
Transformers on a PCB
ID 319909889 © Media Whalestock | Dreamstime.com
Needles on automatic test equipment
325988743 © aleksei todosko | Dreamstime.com
id_325988743__aleksei_todosko__dreamstime
ID 10638070 © Brian Hoffman | Dreamstime.com
Wind turbines in approaching storm
Dreamstime_kpixmining_229797125
dreamstime_kpixmining_229797125
Current Promo 1 5fc66ffadde1c

Peak Current of Isolated Gate Drivers (.PDF Download)

Dec. 1, 2020

One question often comes up when considering what gate driver to use for an application: What is the peak current that a driver can deliver? Peak current is one of the most important parameters in gate-driver datasheets. It’s generally taken as the be-all and end-all for the drive strength of the gate driver. The time to turn a MOSFET/IGBT on and off relates to the current that the gate driver can deliver, but it doesn’t tell the whole story.

The term peak current is so widespread in the industry that it’s included in the title of many gate-driver datasheets. Despite this, its definition varies from part to part. This article discusses the issues with using peak current as a deciding factor when selecting a gate driver for a specific application and compares some of the more common representations of peak current in datasheets. A comparison between gate drivers with similar peak current numbers in their titles is explored, and a discussion on gate-drive strength is made.

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!