Latest from Power

ID 217230663 © Christian Offenberg - Dreamstime.com | electronica.de
promo_messe_munich__id_217230663__christian_offenb
ID 39977536 © Pino Carboni | Dreamstime.com
Transformers on a PCB
ID 319909889 © Media Whalestock | Dreamstime.com
Needles on automatic test equipment
325988743 © aleksei todosko | Dreamstime.com
id_325988743__aleksei_todosko__dreamstime
ID 10638070 © Brian Hoffman | Dreamstime.com
Wind turbines in approaching storm
Dreamstime_kpixmining_229797125
dreamstime_kpixmining_229797125
Svyatoslav-Lypynskyy_dreamstime_183896577
Svyatoslav Lypynskyy Dreamstime L 183896577 61d5b7e60f0bb

How to Boost Power Density in Automotive Systems (Download)

Jan. 5, 2022

Read this article online.

The latest design architectures, especially in automotive power electronic systems, are critical in the success of any new hybrid electric vehicle (HEV) or electric vehicle (EV). A high-voltage vehicle power network is necessary with voltages of 60 V and higher, along with a traditional 14-V power network.

High-voltage vehicle power network architectures contain an electrical energy-storage system and a traction drive inverter. Some HEV and EV system architectures also may contain high-voltage power electronic systems using dc-dc converters to power a low-voltage network. Examples include electrical air-conditioning compressors, cooling water pumps, oil pumps, traction bus voltage stabilization, and ac-dc converters for unidirectional or bidirectional interfaces to vehicle grids.

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!