Latest from Analog

ID 339690856 © Asliyuce | Dreamstime.com
opamp_dreamstime_l_339690856web
Dreamstime_Brooke-Becker_14980958 and University of Nebraska–Lincoln
dreamstime_brookebecker_14980958
Dreamstime_Yulia_Ryabokon_294380101
dreamstime_yulia_ryabokon_294380101
ID 267663329 © Chabkc | Dreamstime.com
batterymonitor_dreamstime_xl_267663329
Dreamstime_Prostockstudio_367306155
dreamstime_aiprostockstudio_367306155
Dreamstime
Promo 2 652d8e1b6e7b7

Hall-Effect Current Sensors Promote Precision Control (Download)

Nov. 1, 2023

Read this article online.

High-voltage systems including electric vehicles, industrial robots, communications infrastructure equipment, and renewable-energy installations often require accurate current measurements. You can use a current-shunt or Hall-effect sensor to make such measurements, but recent innovations have given the Hall-effect current sensor an edge up over current shunts in many applications.

Consider the tradeoffs between the shunt and Hall-effect approaches to current measurement. Traditionally, shunt-based current measurement has provided better accuracy and lower drift over the entire operating-current range, over high and low temperature extremes, and throughout the useful life of the system in which it’s used.