"Cap-Drop" Approach Implements Offline Power Supply for Light Loads (.PDF Download)

Sept. 12, 2016
Low-power applications such as e-meters (electricity or energy meters) often require a simple ac line-powered supply where a 3.3-V rail powers a microcontroller and charges a lithium-ion battery to 4.2 V. You can implement this with a mains-frequency power transformer or with a more complicated ac-dc (offline) power supply. Both approaches have well-known disadvantages related to a combination of weight, size, and complexity. Two simpler options are a full-wave capacitor-drop circuit with the bridge rectifier (Fig. 1) and similar half-wave circuit...  

Low-power applications such as e-meters (electricity or energy meters) often require a simple ac line-powered supply where a 3.3-V rail powers a microcontroller and charges a lithium-ion battery to 4.2 V. You can implement this with a mains-frequency power transformer or with a more complicated ac-dc (offline) power supply. Both approaches have well-known disadvantages related to a combination of weight, size, and complexity. Two simpler options are a full-wave capacitor-drop circuit with the bridge rectifier (Fig. 1) and similar half-wave circuit...

Register or Sign in below to download the full article in .PDF format, including high-resolution graphics and schematics when applicable.

Sponsored

A microcontroller with an integrated energy harvester offers a way to extend battery life and replacement batteries
Integrated power supply ICs to implement compact and efficient buck converters for factory automation, 5G and IoT.
Learn how integrated voltage sensing solutions support a more efficient and affordable way of measuring battery life to increase driving range and charge time.
The high-voltage CCE4511 interface IC has overvoltage detection, as well as high temperature and overcurrent protection, based on 0.18m HV-CMOS technology. Typical applications...