Silicon’s 20th Century dominance in power electronics applications has been eroding for some time now. As engineers extract dwindling amounts of additional performance from silicon ICs, they are looking to wide-bandgap (WBG) materials to develop next-generation power electronics. Examples include silicon carbide (SiC) and gallium nitride (GaN). Materials that have a wide bandgap are inherently applicable in high-power electronics, as they have a higher breakdown voltage and are able to run at higher temperatures when compared to materials with narrow bandgaps, such as silicon.
SiC and GaN also offer the potential for smaller, more robust power devices, which switch faster and are more energy-efficient than Si-based devices. SiC and GaN products, in demand for electric-car and mobile-device applications, perform much better than Si in reducing on-state resistance and shrinking package size. This results in faster charging, lower power consumption, and more efficient energy conversion. Generally speaking, SiC power semiconductor devices are being specified for applications with high power capacity (in excess of 600 V) and GaN for applications involving medium to low-power capacities.