AMD's Project SkyBridge Unifies x86 And 64-bit ARM


AMD's Project Skybridge starts to unify their x86 and ARM technologies with AMD's Ambidextrous Architecture. The solutions start with their APU SoCs and will flow to their SeaMicro superserver platforms. It uses a common interconnect fabric that essentially links the processor cores with peripherals and GPUs (Fig. 1).

This is a logical follow on to AMD's 64-bit ARM announcements (see “AMD ARMs 64-Bit Servers”) and the Heterogeneous System Architecture (HSA) that is found in their APU (Accelerated Processing Units) that contain CPU and GPU cores (see “Heterogeneous System Architecture Changes CPU/GPU Software”). AMD currently has ARM Cortex-A57 chips and that will be part of Project Skybridge but their future support will be based on the AMD K12 ARM core that will show up in 2016 (Fig. 2).

The first fruits of Project Skybridge will be pin compatible, 20-nm chips that sport Pum+ x86 cores or ARM Cortex-A57 cores along with AMD's GPU supporting HSA. Most users will not be swapping chips around but the approach will be very useful to vendors looking to provide flexible solutions while minimizing the number of motherboards they have to support. This will also be useful for AMD's SeaMicro platforms in the future what already support x86 and ARM solutions at the system level using boards specific to each type of core.

One reason AMD is taking this approach is to take advantage of high growth areas like the use of the ARM Cortex-A57 in servers. This is still a young market and AMD will have a good bit of competition. Whereas there is only one major x86 alternative, Intel, there are many sporting Cortex-A57 platforms. On the plus side, AMD is well established with its x86 solutions in the embedded, desktop and server markets. AMD also expects to take these chips into semicustom environments as well.

AMD is using a common on-chip fabric to link peripherals with the CPUs and GPUs. This provides the HSA support. HSA and the common fabric greatly simplifies system software development since it is incorporates so many common hardware components.

In a sense, this is parallel to the approach that many microcontroller companies have taken when they have different CPU architectures to contend with. The first step is to provide a common programming and tool solution. The second step is to integrate the peripherals and pin-compatiblity. Some companies eventually migrate to a single processor architecture but this cannot be done quickly or easily.

AMD is unlikely to fold their x86 platforms. They still provide higher performance than ARM solutions at this point but the ARM solutions will now compete on an even footing with their x86 counterparts allowing developers to chose the level of performance and power requirements.

The approach has some interesting implications for embedded developers that often had to chose from a plethora of x86 motherboards to a confusing array of ARM-based solutions that often did not play well with established peripheral I/O boards. Project Skybridge potentially makes those x86 solutions into ARM-based solutions.

AMD is also ignoring ARM arenas where they do not already have a presence such as the smartphone market. There are well established players in that space that already have 64-bit ARM chips on target. That still leaves a lot of room for some interesting competition.

Newsletter Signup

Please or Register to post comments.

What's alt.embedded?

Blogs focusing on embedded, software and systems


William Wong

Bill Wong covers Digital, Embedded, Systems and Software topics at Electronic Design. He writes a number of columns, including Lab Bench and alt.embedded, plus Bill's Workbench hands-on column....
Commentaries and Blogs
Guest Blogs
Nov 11, 2014

How to Outsource Your Project to Failure 3

This article will address failure to carefully vet a potential manufacturing or “turnkey” partner and/or failure to transfer sufficient information and requirements to such a partner, a very common problem I have seen again and again with my clients over the years, and have been the shoulder cried upon by several relatives and clients in the past....More
Nov 11, 2014

Transition from the Academe to the Industry Unraveled 1

There have been many arguments here and there about how short-comings of universities and colleges yield engineers with skill sets that do not cater to the demands of the industry. There have been many arguments here and there about an imminent shortage of engineers lacking knowledge in the sciences. There have been many arguments here and there about how the experience and know-how of engineers in the industry may vanish due to the fact that they can’t be passed on because the academic curriculum deviates from it....More
Nov 11, 2014

Small Beginnings 5

About 10 years ago I received a phone call from an acquaintance. He had found a new opportunity selling some sort of investments and he wanted to share it with me in case I was interested. Ken had done fairly well for many years as a contract software developer primarily in the financial services sector. His specialty was writing RPG code. (RPG is often referred to as a write only language.) But he was seeing the handwriting on the wall as the industry moved on to other methods, and saw himself becoming a fossil....More

Sponsored Introduction Continue on to (or wait seconds) ×