How Many Quarks Does It Take To Make An IoT?

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

Intel wants to build the Internet of Things (IoT) using the x86 architecture, but that would have been a challenge using the Intel Atom. After starting out small, the Atom has grown to a full-fledged, 64-bit platform with virtualization support and multiple cores. It is still a low-power device compared to the Core or Xeon lines, but multicore Arm platforms have it beat on power utilization.

The 32-bit, Pentium-class X1000 Quark system-on-chip (SoC) is Intel’s new solution (Fig. 1). The single-threaded core runs at 400 MHz and is designed for low-power applications well below what an Atom could be used for. The chip has a 16-kbyte L1 cache and a whopping 512 kbytes of SRAM, so the DDR3 memory support may not be required for many applications.


Quark Specs

The Quark’s peripheral set is typical of this class of high-end microcontrollers. It includes 10/100-Mbit/s RMII Ethernet, x1 PCI Express Gen 2, SD/MMC, USB 2.0, SPI, UART, I2C, GPIO, and a real-time clock.

The Quark is still a compute and communications platform, so any analog support would be off-chip. The PCI Express Gen 2 opens up a number of possibilities such as display or graphics support. Overall, the Quark is a good starting point for a family of SoCs.

The Quark die is one-fifth the size of an Atom, but limitations come with the smaller size. The chip has the x86 virtual memory management support. System virtualization is not part of the package, but that is not as necessary in embedded applications targeted by the chip.

This approach seems reasonable since it also requires one-tenth the wattage of an Atom. The platform, then, definitely can target mobile and wearable products. Of course, the Quark will have lots of competition from other SoCs including those based on Arm and MIPS cores.

The Quark was announced at IDF 2013, but it was presented as a synthesizable SoC platform that Intel customers could add their intellectual property (IP) even though it would have to be built in Intel fabs (see “IDF 2013 And Windows 8 Revisited” at The X1000 is essentially the base for this design.

An x86 Arduino

The Quark is currently available on the Arduino Galileo board, which is designed for developers and students (Fig. 2). It is compatible with Arduino shields. The Arduino software tools, including Sketch, will be designed to work with the platform, but these are only starting points for students.


The board also exposes the USB, Ethernet, and PCI Express, which is via a half-card, mini-PCIe socket. The system boots from 8-Mbyte SPI flash. And, it boasts 256 Mbytes of DDR3 DRAM plus 11 kbytes of EEPROM.

The Galileo will have to compete with many of the 32-bit Arduino-compatible alternatives such as those based on Arm Cortex microcontrollers and Microchip’s 32-bit MIPS platform. Many can run Linux or other operating systems. The Galileo runs Linux.

At this point, the Internet of Things comprises multilevel gateways. The Quark is Intel’s lowest layer. We will have to see if the bar is low enough.

Newsletter Signup

Please or Register to post comments.

What's alt.embedded?

Blogs focusing on embedded, software and systems


William Wong

Bill Wong covers Digital, Embedded, Systems and Software topics at Electronic Design. He writes a number of columns, including Lab Bench and alt.embedded, plus Bill's Workbench hands-on column....
Commentaries and Blogs
Guest Blogs
Nov 11, 2014

How to Outsource Your Project to Failure 4

This article will address failure to carefully vet a potential manufacturing or “turnkey” partner and/or failure to transfer sufficient information and requirements to such a partner, a very common problem I have seen again and again with my clients over the years, and have been the shoulder cried upon by several relatives and clients in the past....More
Nov 11, 2014

Transition from the Academe to the Industry Unraveled 1

There have been many arguments here and there about how short-comings of universities and colleges yield engineers with skill sets that do not cater to the demands of the industry. There have been many arguments here and there about an imminent shortage of engineers lacking knowledge in the sciences. There have been many arguments here and there about how the experience and know-how of engineers in the industry may vanish due to the fact that they can’t be passed on because the academic curriculum deviates from it....More
Nov 11, 2014

Small Beginnings 5

About 10 years ago I received a phone call from an acquaintance. He had found a new opportunity selling some sort of investments and he wanted to share it with me in case I was interested. Ken had done fairly well for many years as a contract software developer primarily in the financial services sector. His specialty was writing RPG code. (RPG is often referred to as a write only language.) But he was seeing the handwriting on the wall as the industry moved on to other methods, and saw himself becoming a fossil....More

Sponsored Introduction Continue on to (or wait seconds) ×