Running Ada 2012 On The Cortex-M4


I like to think I write good code, and I’ve used C and C++ almost since their inception. I admit to incorporating more than one unwanted bug into C applications that were eliminated after sometimes tedious diagnostic sessions. Almost every new microcontroller released has a free C/C++ compiler toolchain associated with it.

Unfortunately, C is very unforgiving, and C++ is only a little better. But they are the mainstay for embedded programmers these days. That’s one reason why I have been waiting for AdaCore’s delivery of its Ada 2012 toolchain for Arm’s Cortex-M platform. It is a free download at

The Cortex-M is the main low-end, 32-bit microcontroller utilized by almost all major microcontroller vendors that have adopted the Arm architecture. Vendors like Green Hills Software, Atego, and Adacore have supported the Cortex platform in the past but with earlier Ada standards. Ada 2012 includes a range of new features including contracts (see “Ada 2012: The Joy of Contracts” on

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

Rolling Up My Sleeves

I had already tried out a version of AdaCore’s GNAT Programming Studio (GPS). It generated applications that would run on Linux on the BeagleBone based on the Texas Instruments Cortex-A8 platform (see “ARMing Ada” on The new toolchain targets bare metal, which is needed for many applications.

Setup was easy since GPS was already installed. Setting up the ST-Link debug interface to the STM32 board (see the figure) actually took more time. It was then a matter of running through the flashing LED demo. I included a snippet of code from a flashing LED program to highlight some of the advantages of using Ada 2012 (see the listing).

with LEDs;          use LEDs;
with Button;        use Button;
with Ada.Real_Time; use Ada.Real_Time;
package body Driver is
   type Index is mod 4;
   Pattern : constant array (Index) of User_LED := (Orange, Red, Blue, Green);
   task body Controller is
      Period     : constant Time_Span := Milliseconds (75);  -- arbitrary
      Next_Start : Time := Clock;
      Next_LED   : Index := 0;
         Off (Pattern (Next_LED));
         Next_LED := Next_LED +  
           (if Button.Current_Direction = Counterclockwise then -1 else 1);
         On (Pattern (Next_LED));
         Next_Start := Next_Start + Period;
         delay until Next_Start;
      end loop;
   end Controller;
end Driver;

Even if you haven’t used Ada, you should be able to get an idea of what’s going on. In particular, the task body definition highlights the built-in multitasking support. Also note the use of the “modular” (unsigned) data type for Index that limits the addressing of the Pattern array. Unlike C, there is no need to check the result of Next_LED when it is updated. Additionally, I prefer the more verbose if/then/else conditional expression of Ada to the C/C++ ?: combination. I have programmed in APL, and its one-liners were neat but typically indecipherable. C and C++ code can get this way too.

Ada has a number of benefits compared to C and C++ (see “Ada Offers Advantages Over C And C++” on But it has drawbacks as well, such as availability. For ARM Cortex microcontrollers, this is no longer an issue. Developers can take advantage of all the Ada 2012 features, from generics to multitasking.

I would encourage anyone wanting to write bulletproof code for embedded applications to check out the AdaCore/STM32 combination. It is inexpensive and very functional. The ST-Link support also allows it to work with platforms like the STM32F401 Nucleo (see “Extensible Prototyping Board Built For STM32 MCUs” on I tried it on my Nucleo as well.

The Heartbleed bug (see “What Heartbleed Should Teach Embedded Programmers” on is just one of many reminders of how one range check error can wreak havoc. C does not do it, but Ada does check—and not just on array access, by default. Ada will not eliminate all bugs from your code, but it does make it a lot harder to create them.

Discuss this Blog Entry 3

on Jul 11, 2014

Hello Bill,
the demo application works fine for me!

The most important thing to get it working was the tip you've gave me via e-mail: where is the STM32 LED demo project
located (GNAT install folder/share/examples/gnat-cross/demo_leds-stm32f4).

Then I found the tutorial in the GPS help menu: Help>GNAT>Cross GNAT User's Guide
It was described in detail there.

I tried the Windows version so didn't have to compile the st-util utility.

Thank you for your help!

Maybe AdaCore should post the STM32 tutorial on-line because if I didn't find your article I wouldn't know about it at all.

on Jul 22, 2014

Hi Bill

Would you be willing to post details of setting up the ST-Link debug interface to the STM32 board in GPS please ?

To me this is an important piece of the puzzle.

thanks. Martyn

on Jan 30, 2015

As I know AdaCore hasn't released a free version of their ARM toolset yet - I'm playing with a pre-release copy. I expect such a free version to be available within the next few months, but of course, I don't control their schedule. I'll post when it becomes available.

Please or Register to post comments.

What's alt.embedded?

Blogs focusing on embedded, software and systems


William Wong

Bill Wong covers Digital, Embedded, Systems and Software topics at Electronic Design. He writes a number of columns, including Lab Bench and alt.embedded, plus Bill's Workbench hands-on column....
Commentaries and Blogs
Guest Blogs
Jan 26, 2017

An Amateur’s View on the P2 (Part 2): Slew Rate and the Oscillator 3

Justin Mamaradlo takes a further look into the P2 op amp and how it functions, analyzing the oscillation and slew-rate characteristics of the venerable component....More
Jul 15, 2016

Simple Yet Effective ESD Testing Methods for Higher Reliability 11

There are multiple ways to test for electrostatic discharge, ranging from implementing a human-body or machine model to....using a balloon and a comb?...More
Apr 8, 2016

Confabbing on the Fabless Fad 5

High capital and maintenance costs, and EDA advances along with abstractions to deal with chip complexity, have been leading contributors to the fabless migration....More

Sponsored Introduction Continue on to (or wait seconds) ×