Gate Drivers: Key To Power SwitchingSponsored by: IXYS CORP.

Nov. 15, 2004
Consider all aspects of gate-driver design to ensure power-system reliability and performance.
Power-Switching Enablers Low-power, logic-level switching signals can't drive moderate- to high-power semiconductor switches, such as the MOSFET (metal-oxide semiconductor field-effect transistor) and IGBT (insulated-gate bipolar transistor). To solve this problem, gate-driver ICs provide the necessary buffer between low-power switching signals and discrete MOSFET/IGBT power semiconductor switches. Gate-driver ICs are essentially power amplifiers that accept low-level switching inputs and produce switched outputs of hundreds of milliamperes to tens of amperes to drive MOSFET and IGBT gates. These MOSFET/IGBTs can then handle loads from milliwatts to kilowatts, depending on the gate-drive current and the power-handling capability of the MOSFET/IGBT.Performance Basics To be effective, the gate driver's input stage must be compatible with both TTL and CMOS inputs. It also must be immune to latch-up over its entire operating range. The output stage can supply single-ended, half-bridge, or three-phase bridge drive for MOSFETs/IGBTs. Most gate drivers can handle output loads from 2000 to 3000 pF, which is approximately the input capacitance of a typical power MOSFET or IGBT. Today's gate drivers can exhibit rise and fall times of less than 100 ns with the same order-of-magnitude propagation delays. Because they accept low-voltage inputs and handle higher output voltage levels, gate drivers must have efficient, reliable, and non-latching voltage-level translation circuits. Gate drivers feature shutdown options as well as overcurrent, undervoltage, and overtemperature protection.

Click here to download the PDF version of this entire article.

Sponsored Recommendations

TTI Transportation Resource Center

April 8, 2024
From sensors to vehicle electrification, from design to production, on-board and off-board a TTI Transportation Specialist will help you keep moving into the future. TTI has been...

Cornell Dubilier: Push EV Charging to Higher Productivity and Lower Recharge Times

April 8, 2024
Optimized for high efficiency power inverter/converter level 3 EV charging systems, CDE capacitors offer high capacitance values, low inductance (< 5 nH), high ripple current ...

TTI Hybrid & Electric Vehicles Line Card

April 8, 2024
Components for Infrastructure, Connectivity and On-board Systems TTI stocks the premier electrical components that hybrid and electric vehicle manufacturers and suppliers need...

Bourns: Automotive-Grade Components for the Rough Road Ahead

April 8, 2024
The electronics needed for transportation today is getting increasingly more demanding and sophisticated, requiring not only high quality components but those that interface well...

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!