Latest from Power

ID 39977536 © Pino Carboni | Dreamstime.com
Transformers on a PCB
ID 319909889 © Media Whalestock | Dreamstime.com
Needles on automatic test equipment
325988743 © aleksei todosko | Dreamstime.com
id_325988743__aleksei_todosko__dreamstime
ID 10638070 © Brian Hoffman | Dreamstime.com
Wind turbines in approaching storm
Dreamstime_kpixmining_229797125
dreamstime_kpixmining_229797125
Dreamstime_svetlanadiacenco_325233820 and LEM
dreamstime_svetlanadiacenco_325233820_promo

Motor-Driver PCB Layout Guidelines, Part 1 (.PDF Download)

Aug. 3, 2017
Motor-Driver PCB Layout Guidelines, Part 1 (.PDF Download)

Printed-circuit-board (PCB) substrate material, like FR-4 glass epoxy, is a poor conductor of heat. Conversely, copper is an excellent conductor of heat. So, more copper area on a PCB is ideal from a thermal-management perspective.

Thick copper, like 2-oz. foil (68 microns thick), conducts heat better than thinner copper. Unfortunately, using thick copper is expensive, and makes it difficult to achieve fine geometries. Therefore, the use of 1-oz. (34 microns) copper has become commonplace. For external layers, this is often ½-oz. copper plated up to 1-oz. thickness.

Solid-copper planes used on inner layers of multi-layer boards work well to spread heat. However, since these planes are normally placed in the center of the board stack-up, the heat can get trapped inside the board. Adding copper areas on the outer layers of the PCB and placing many vias to connect, or “stitch,” these areas to the inner planes helps transfer heat out of the planes.

On two-layer PCBs, spreading heat may prove more difficult due to the presence of traces and components. Providing as much solid copper as possible with good thermal connections to the motor-driver IC is a necessity. Putting copper pours on both outer layers and stitching them together with many vias helps spread the heat across areas cut by traces and components.

Trace Width: Wider Is Better

Since the current in and out of a motor-driver IC is large (exceeding 10 A in some cases), carefully consider the width of PCB traces in and out of the device. The wider the trace, the lower the resistance. Traces must be sized so that excessive power isn’t dissipated in the trace resistance, which causes the trace to heat up. Too small of a trace can actually act like a fuse and burn open!

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!