Polymer Tantalum Capacitors Toughen Up to Meet Automotive Demands (.PDF Download)

Aug. 22, 2017
Polymer Tantalum Capacitors Toughen Up to Meet Automotive Demands (.PDF Download)

Today’s cars increasingly depend on electronic equipment such as infotainment and advanced driver assistance systems (ADAS) to meet important safety standards and customer demands. Although more electronic modules are needed on-board, little, if any, extra space is available to house them, so smaller and more space-efficient modules are always sought after.

As far as ICs are concerned, Moore’s law reductions in process geometry and the evolution of application-specific devices assist miniaturization by reducing the size and number of components on circuit boards. On the other hand, miniaturizing the many passive components, such as the capacitors needed on power-supply lines or at dc-dc converter inputs/outputs, is a tougher challenge.

Polymer Tantalum vs. Aluminum Electrolytics

Traditionally, ceramic or aluminum-electrolytic capacitors have been used for tasks like decoupling and power-supply filtering. Tantalum-electrolytic capacitors are known to have higher volumetric efficiency, and could enable the circuitry to be made smaller. Of the types that are available, polymer tantalum capacitors built with a tantalum anode, tantalum-pentoxide (Ta2O5) dielectric, and a cathode made from a conductive polymer hold several advantages over traditional tantalum capacitors featuring a manganese-dioxide (MnO2) cathode.

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!