Radar and Ultrasonic Sensors Strengthen ADAS Object Detection (.PDF Download)
According to the National Safety Council (NSC), as many as 40,000 people died in motor vehicle crashes in the U.S. in 2016, the highest total in more than a decade. Among the main causes were speeding, driving while impaired, and texting while driving. Including the 4.6 million people injured, the total costs from medical expenses, lost wages and productivity, and property damage could exceed $432 billion.
To help improve road safety and satisfy increasingly stringent government regulations, automakers are adding a range of diverse technologies to their new models that help drivers avoid accidents, both at high speeds and when backing up or parking. These systems can be grouped into the category of advanced driver-assistance systems (ADAS). In addition to increasing safety, ADAS applications improve comfort, convenience, and energy efficiency.
Typical ADAS features include blind-spot and lane-departure warning, forward collision and rear cross-traffic warning, automatic emergency breaking, lane-keep assist, and adaptive cruise control.
The Society of Automotive Engineers (SAE) has defined six levels of vehicle automation (Fig. 2). It spans from Level 0, which has no automation, to Level 5, which involves fully autonomous vehicles. As automation expands, driver assistance and ADAS play an increasingly important role.