67ae44497db37b739d92d638 Uwbradarsignalanalysis 1540x800

White Paper: UWB Radar Signal Analysis

Feb. 19, 2025
This paper will review different ways to overcome the challenges of RF measurements in the E band for ultra wide signals. It will look at the demodulation and analysis of a wideband automotive radar signal and discuss the results and main performance parameters.

Automotive FMCW radars typically operate between 76 GHz and 77 GHz. In some countries, the frequency range between 77 GHz and 81 GHz has become available for automotive radar applications. The distance resolution of an FMCW radar is proportional to its signal bandwidth. Therefore, automotive radar manufacturers are already developing FMCW radars with bandwidths of several GHz to get the most out of the available frequency range. In addition to signal frequency and bandwidth, the signal linearity and chirp duration determine radar performance. It is therefore important to analyze automotive radar signal parameters such as chirp length, chirp rate and frequency deviation. This paper will review different ways to overcome the challenges of RF measurements in the E band for ultra wide signals. It will look at the demodulation and analysis of a wideband automotive radar signal and discuss the results and main performance parameters. Register and download your free whitepaper now.

This content is sponsored by:

Sponsored

How to Simplify the Test of CAN Bus Networks Using the Right Oscilloscope

In-vehicle networks (IVNs) allow microcontrollers and engine control units (ECUs) to communicate with sensors, actuators, indicators, displays, and each other. One of the classic...

LT8645/LT8646 Synchronous Step-Down Regulators

Analog Devices' LT8645 and LT8646 are 65 V, 8 A synchronous step-down/buck regulators. These regulators feature Silent Switcher architecture designed to minimize EMI/EMC emissions...

Integrated Power Supply Buck Converters

Integrated power supply ICs to implement compact and efficient buck converters for factory automation, 5G and IoT.

Capacitive Sensor with SLG47011 AnalogPAK™

This application note describes the circuitry using the SLG47011 to create a capacitive sensor. Design files are included in the References section.