Latest from Test & Measurement

27253616 © Nomisg | dreamstime.com
dreamstime_nomisg_27253616_promo
ID 319909889 © Media Whalestock | Dreamstime.com
Needles on automatic test equipment
Cabe Atwell and Dreamstime_psstockfoto_45092862
dreamstime_psstockfoto_45092862
Dreamstime_svetlanadiacenco_325233820 and LEM
dreamstime_svetlanadiacenco_325233820_promo
ID 322271709 © Cherezoff | Dreamstime.com
roboticarm_dreamstime_l_322271709
Herbert James Winterstern (movie poster)
promo1920x1080
ID 77960135 © Zorandim | Dreamstime.com
promo_id_77960135__zorandim__dreamstime

Reduce Test/Diagnosis Cost with Optimized Scan-Pattern Ordering (.PDF Download)

March 26, 2019
Reduce Test/Diagnosis Cost with Optimized Scan-Pattern Ordering (.PDF Download)

Finding the right balance among test cost, test quality, and data collection for running diagnosis requires consideration of several competing factors. Luckily there are some best practices for creating efficient cost-effective pattern sets and applying them in the best order for detection and diagnosis of defective parts.

Test engineers can improve defect detection and silicon quality by applying a lot of patterns and pattern types, such as gate-exhaustive patterns, but this gets expensive. The more cost-effective way is to target the types of fault models that detect the most silicon defects without over-testing.  Do this by creating a sequence such that each pattern set can be fault-simulated against other fault types before additional “top-up” patterns are created to target the remaining undetected faults. This cross-fault simulation is important for test cost reduction.

The challenge is determining the order in which patterns should be created. In general, give priority to creating patterns that have the most strict detection requirements, such as path delay patterns. Figure 1 illustrates a typical pattern generation process.

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!