Selecting the Right Resistor for High-Temperature Apps (.PDF Download)

April 10, 2020

Until recently, the limiting factor in high-temperature electronics has been the degradation in semiconductor properties of the active components used. However, with recent advances in high-temperature semiconductors and silicon-carbide-based materials, passive components such as resistors have been the limiting factor. As a result, proper resistor selection has become a critical factor in the design of high-temperature electronics to ensure proper operation and reliability.

Resistors have traditionally been manufactured by a variety of methods and technologies, including metal and metal-oxide film, metal foil, carbon, wirewound, and thick-film methods. Each has specific characteristics that make them more or less suitable for high-temperature applications. Resistor degradation at high temperature can vary from a small resistance change over time to a catastrophic change in resistance, exhibited by either becoming open circuit or, in some cases, a short circuit.

Sponsored Recommendations

Near- and Far-Field Measurements

April 16, 2024
In this comprehensive application note, we delve into the methods of measuring the transmission (or reception) pattern, a key determinant of antenna gain, using a vector network...

DigiKey Factory Tomorrow Season 3: Sustainable Manufacturing

April 16, 2024
Industry 4.0 is helping manufacturers develop and integrate technologies such as AI, edge computing and connectivity for the factories of tomorrow. Learn more at DigiKey today...

Connectivity – The Backbone of Sustainable Automation

April 16, 2024
Advanced interfaces for signals, data, and electrical power are essential. They help save resources and costs when networking production equipment.

Empowered by Cutting-Edge Automation Technology: The Sustainable Journey

April 16, 2024
Advanced automation is key to efficient production and is a powerful tool for optimizing infrastructure and processes in terms of sustainability.