Concern is rising among governments worldwide about electronic wastes--discarded computers, televisions, cell phones, audio equipment and batteries--leaching lead and other substances that may seep into groundwater supplies.
Worry has reached such a level that some European countries are forcing manufacturers to take back discarded electronics. In the United States, California and Massachusetts have banned their disposal in municipal solid waste landfills. However, some officials are looking beyond these stop-gap measures to find a solution.
A study under way at the Georgia Institute of Technology may offer a model for other states and nations. Researchers are conducting the study in cooperation with the Pollution Prevention Assistance Division of the Georgia Department of Natural Resources (DNR), which is funding the project with additional support from the National Science Foundation.
Researchers have devised a “reverse production” system that creates infrastructure to recover and reuse every material contained within e-wastes--metals such as lead, copper, aluminum, and gold, as well as various plastics, glass, and wire. Such “closed loop” manufacturing and recovery offers a win-win situation for everyone, researchers said. Less of the Earth will be mined for raw materials, and groundwater will be protected.
But this simple concept requires a lot of brand new thinking, said Jane Ammons, a professor in the School of Industrial and Systems Engineering and a governor-appointed member of the Georgia Computer Equipment Disposal and Recycling Council. She and colleague Matthew Realff, an associate professor in the School of Chemical Engineering, are devising methods to plan reverse production systems that will collect e-trash, tear apart devices (“de-manufacture it”) and use the components and materials again--all while making the process economically viable.
Though this system is being designed for Georgia, its application elsewhere has sparked interest nationally and internationally, the researchers reported. Officials in Taiwan and Belgium have consulted with the researchers, as have several multinational electronics and logistics firms. Also, the researchers' work on carpet recycling was used in testimony to Congress and helped in developing an industry coalition that has the goal of diverting 25% of carpet from landfills by 2012.
The project is building on other research that Ammons and Realff are conducting. Their fundamental work in reverse production systems has been funded by the National Science Foundation. Ammons' related research is funded by the National Science Foundation (NSF) as one of four ADVANCE chaired professors at Georgia Tech. ADVANCE is a program to improve the career success of women faculty in science and engineering. Also, Ammons and Realff are applying their findings from other studies to the e-waste project. For example, they have modeled the regional and national infrastructure necessary for cost-effective and environmentally beneficial collection and recycling of carpet to extract nylon fiber, caprolactam monomer and other products.
“It's a matter of seeing a waste as a resource,” Ammons said. Key to their approach is the ongoing development of a mathematical model to predict the economic success of recovery efforts. Modeling is necessary given the uncertainty inherent in a host of variables--quantities, locations, types, and conditions of old parts, and numerous aspects of transportation (distance, costs of fuel, labor, insurance, etc.). Ammons and Realff have involved experts, many of them from Georgia recycling and salvaging businesses, to probe the complicated interplay between manufacturing, de-manufacturing and logistics. Meanwhile, the DNR is eagerly awaiting the final results of the study.
For more information, contact Jane Ammons at [email protected] or Matthew Realff at [email protected].