Asset1 Shutterstock 1916603153 1 1540 800 614245ca4432c

A Reverse-Engineering Assessment of a Secure Authenticator with PUF Technology

Sept. 15, 2021
From fault injection to side-channel analysis cybercriminal attacks grow more sophisticated. But you can’t steal what isn’t there. Enter the physically unclonable function (PUF) and a third-party security lab’s study on ChipDNA™ PUF technology.
From fault injection to side-channel analysis and invasive techniques, cybercriminals continue to become more sophisticated in their attack methods that are applied to security ICs. With pervasive connectivity and the resulting exposure, hardware-based security provides the most effective solution for protecting the assets of embedded systems. The newest embedded security ICs feature the most advanced level of protection against invasive attacks currently available: the physically unclonable function (PUF). This paper provides the findings of a reverse-engineering study conducted by a third-party security lab to evaluate the security robustness of Maxim’s secure authenticator with ChipDNA™ PUF technology. 

Sponsored

A Designer's Guide to Lithium (Li-ion) Battery Charging

This designer's guide helps you discover how you can safely and rapidly charge lithium (LI-ion) batteries to 20%-70% capacity in about 20-30 minutes.

Get Started with USB-C Power Delivery

Integrating USB Type-C connectors into designs requires developers pay careful attention to proper connector options and recommended layout guidelines.

Power Topologies Handbook

Buy ICs, tools & software directly from TI. Request samples, enjoy faster checkout, manage orders online and more with your myTI account.

Power Topologies Quick Reference Guide

This book shows waveforms and equations of the most common hard switched power supply topologies and the soft switched Phase-Shifted Full-Bridge.