Implementations and capabilities of touch technology are vast, to the point where it’s become ubiquitous. The technology is central to smartphones and tablets along with a plethora of embedded applications from automotive to industrial.
I recently talked with Patrick Hanley, Product Marketing Manager for Touch Technology for Atmel, about Atmel’s offerings.
Wong: What markets does Atmel play into?
Hanley: Atmel focuses on industrial, consumer, communications, computing, and automotive markets. We provide the electronics industry with complete system solutions by leveraging one of the industry's broadest IP technology portfolios.
Wong: The world of touch-enabled devices is skyrocketing; from the proliferation of smartphones to tablets, almost everyone wants to tap a screen even if it’s not touch-enabled. What do you think has led to the widespread adoption?
Hanley: With the introduction of the iPhone in 2007, the general consumer market became more comfortable and aware of capacitive touch-enabled products to infiltrate our lives. For years prior, the idea of a capacitive touch was an unfamiliar concept that consumers were less comfortable with.
Today most individuals approach all displays with the assumption it is touch-enabled. The world of touch can be seen in a vast range of formats and devices, at its most basic levels in buttons, sliders, and wheels, to more advanced touchscreens that provide multiple, true X/Y coordinates. These touch devices also reach a multitude of applications. From GPS systems to wearables to all-in-one PCs, there is a place for touch in all of these devices.
Wong: Atmel recently announced the latest in touch with the introduction of the mXT106xT family. Can you elaborate?
This file type includes high resolution graphics and schematics when applicable.
Hanley: The mXT106xT family is a continuation of our T-series family of products. It is aimed at the largest growth touchscreen market, screens between 7 to 8.9 inches. We introduced adaptive sensing, which is a hybrid of mutual- and self-capacitance. This enables the best glove, finger hover sensing and stylus support available, even in the presence of moisture. Adaptive sensing is crucial, as it enables touch classification where the touch controller is able to determine the difference between a single finger, multi-touch, glove, hover, and stylus, and reacts to the user appropriately.
We unveiled several new features including the peripheral touch controller (PTC), the first touch controller that enables capacitive button capabilities within the same controller without compromising any additional x/y-lines. The PTC improves noise immunity, eliminates external components, and simplifies the sensor design. Additional features include voltage triplers and non-HDI (high-density interconnect) packages. The voltage tripler reduces external BOM components, saving the customer space and cost. The non-HDI package enables customers to reduce PCB layers, further reducing costs.
Wong: Sounds interesting. So, we all know device features are everything, starting from the initial touch performance carrying through to everything else that influences the UI. How is Atmel aiming to continue improving these features?
Hanley: The user interface can make or break the success of a product. An intuitive, yet attractive, UI can create demand for products where customers “have to have” these new products. This is the easiest way for an OEM to differentiate their end product.
Improving stylus performance is vital for a variety of applications and vertical markets. Active stylus support is becoming a must-have for higher-end tablets, which are typically identified for professional or artistic uses. Alternatively, passive stylus support is geared toward free-writing capabilities for general users as well as everyday uses. Passive stylus support carries universal stylus capabilities, even as standard as a no. 2 pencil, ultimately revolutionizing the “pen-to-paper” experience.
Atmel also offers features like hover support. We continuously improve range and accuracy while decreasing manufacturing costs through the flexibility of new materials, as well as enable immersive features like advanced gesturing. Features such as hover empower our devices to be able to think beyond the surface, creating the next wave of smart, intuitive products.
Wong: I also see that Atmel’s maXStylus was announced earlier this year at CES. How is this transforming the “pen-to-paper” experience?
Hanley: Historically, to achieve high performance with active stylus solutions, OEMs were spending upwards of $30, adding more inductive layers to the sensor stack-up. The maXStylus is the first capacitive active stylus to provide accurate active-pen performance without an additional sensor layer. This reduces the costs for tablets, laptops, and smartphones while maintaining excellent performance. The result for the user is fewer missing strokes, false detections, longer pen hover range, and more accurate and readable letters and characters. You can even go from using the stylus to your fingers without compromising performance or battery life.
Wong: What upcoming trends and user-interface technologies are you most excited about?
Hanley: Fingerprint security is exciting. It enables improved security with ease-of-use capabilities and more. 3D gesturing is another interesting and popular technology. As seen in the film Minority Report, technologies such as 3D gesturing and motion control allow users to interact with their devices without touching it. It gives you freedom both mentally and physically.
Additionally, Atmel is the leader in sensor hubs, which enable sensor fusion. Sensor fusion leads to more accurate readings of the movements, locations, temperatures, etc., of an object, all while increasing the battery life of the product despite the always-on capabilities.
At Atmel, we believe that these technologies are allowing OEMs and developers to create best-in-class products that let industry leaders create what they have always imagined.