Dreamstime_Artinun-Prekmoung_255431692 and LEM
dreamstime_artinunprekmoung_255431692
75868080 © Vladimir Timofeev | Dreamstime.com
Data_Center_Power_Promo_Dreamstime
Dreamstime_ai_emilyprofamily_377505084
dreamstime_aiemilyprofamily_377505084
ID 364017276 © Can Tuna Ozturk | Dreamstime.com
police_dreamstime_l_364017276
ID 36550735 © Barlic | Dreamstime.com
factory_dreamstime_l_36550735
Martin Capek, Dreamstime.com
Electricitynew Martin Capek Dreamstime L 107951553 6037fba1e085c

Make the Switch from Discrete to Integrated Load Switches, Ideal Diodes, and eFuses (.PDF Download)

March 4, 2021

Read the article online.

Demand for greater power density and smaller printed circuit boards (PCBs) continues to escalate within markets such as building automation and automotive infotainment. To keep up with these trends, there’s a push to convert discrete power circuits to fully or partially integrated solutions.

Discrete components such as diodes, fuses, and metal-oxide semiconductor field-effect transistors (MOSFETs) are being replaced by integrated devices that not only replicate their functionality, but also provide improved performance—including up to 5X higher power density—and other features benefiting the overall application. This article highlights some of the common discrete circuits used for power distribution and protection, as well as the most appropriate integrated solutions to replace them.