Latest from Power

ID 217230663 © Christian Offenberg - Dreamstime.com | electronica.de
promo_messe_munich__id_217230663__christian_offenb
ID 39977536 © Pino Carboni | Dreamstime.com
Transformers on a PCB
ID 319909889 © Media Whalestock | Dreamstime.com
Needles on automatic test equipment
325988743 © aleksei todosko | Dreamstime.com
id_325988743__aleksei_todosko__dreamstime
ID 10638070 © Brian Hoffman | Dreamstime.com
Wind turbines in approaching storm
Dreamstime_kpixmining_229797125
dreamstime_kpixmining_229797125
Zollo Base Promo 621653ff0561a

Battery-Cell Charging Basics (Download)

Feb. 23, 2022

Read this article online.

Charging and discharging are the most fundamental actions applied to cells by cell researchers, cell manufacturing engineers, and battery-pack designers. In this article, I will cover the basics of how a cell charger/discharger functions. I also will touch on how contacting the cell through its fixture is an important part of successful charging and discharging.

Typically, a lithium-ion cell is charged using a constant-current/constant-voltage (CC/CV) charging step. During discharge, a constant-current (CC) discharge step is most often used. How does a charger achieve CC/CV, or a discharger achieve CC?

If we look at basic electronics, a charger is a power supply, very similar in design to any simple benchtop power supply you have encountered in an electronics lab. A power supply allows the user to set a voltage operating point, which is sometimes called the voltage limit or constant-voltage (CV) setpoint. If the power supply is a CV/CC-type supply, then the user also can set the current limit or CC setpoint.

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!