Latest from Test & Measurement

27253616 © Nomisg | dreamstime.com
dreamstime_nomisg_27253616_promo
ID 319909889 © Media Whalestock | Dreamstime.com
Needles on automatic test equipment
Cabe Atwell and Dreamstime_psstockfoto_45092862
dreamstime_psstockfoto_45092862
Dreamstime_svetlanadiacenco_325233820 and LEM
dreamstime_svetlanadiacenco_325233820_promo
ID 322271709 © Cherezoff | Dreamstime.com
roboticarm_dreamstime_l_322271709
Herbert James Winterstern (movie poster)
promo1920x1080
ID 77960135 © Zorandim | Dreamstime.com
promo_id_77960135__zorandim__dreamstime
Dreamstime_Audrius-Merfeldas_164119023 and Copper Mountain Technologies
Promo Dreamstime Audrius Merfeldas 164119023 64d508177355d

An Introduction to the VNA and Vector Network Analysis (Download)

Aug. 10, 2023

Read this article online.

Most design engineers are familiar with tools of the trade such as voltmeters, oscilloscopes, signal generators, and spectrum analyzers. Some may not have had the opportunity to use a vector network analyzer (VNA). It’s the intent of this article to introduce VNA measurement and present a few typical applications.

Why is a VNA Useful?

Transmission lines can support RF propagation in either direction. Signals traveling along a transmission line may encounter localized impairments that aren’t precisely 50 Ω, such as connectors or transitions from coaxial to planar media (other impedances such as 75 Ω are common, but for the purposes of this explanation we will use 50 Ω). Each impairment generates a reflection that travels back toward the source along the transmission line.

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!