Latest from Power

ID 319909889 © Media Whalestock | Dreamstime.com
Needles on automatic test equipment
325988743 © aleksei todosko | Dreamstime.com
id_325988743__aleksei_todosko__dreamstime
ID 10638070 © Brian Hoffman | Dreamstime.com
Wind turbines in approaching storm
Dreamstime_kpixmining_229797125
dreamstime_kpixmining_229797125
Dreamstime_svetlanadiacenco_325233820 and LEM
dreamstime_svetlanadiacenco_325233820_promo
Dreamstime_artinunprekmoung_279687205
carcharging_dreamstime_artinunprekmoung_279687205_
Electronicdesign Com Sites Electronicdesign com Files Figure 1 Sam Jaffe Lm5164

What Goes Into a “Simple” Buck-Regulator Chip? (.PDF Download)

April 29, 2019
What Goes Into a “Simple” Buck-Regulator Chip? (.PDF)

Analog semiconductor companies release buck-regulator chips so often you might think nothing of it. Yet there’s an enormous amount of work that goes into getting that silicon ready for sale. As a former application engineer, I can appreciate all the things that have to happen after the silicon is sorted out and working. I was reminded of this recently on a trip to Texas Instruments’ Silicon Valley campus.

1. Texas Instruments application engineer Sam Jaffe shows off his mHEV (mild hybrid electric vehicle) demo board. It has two power supplies, a buck regulator from 48 V to 12 V, and an isolated flyback from 12-V vehicle to 12-V isolated.

Comments

To join the conversation, and become an exclusive member of Electronic Design, create an account today!